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High speed storage required: 97,000 + 335 * J (real) words,

140,000 + 632 * J (complex) words,

where J is the number of meshwidths.

No. of bits in a word: 64

No. of lines in combined program and test deck: 9800

Keywords: One-Dimensional, Resistive, Implicit, Linear, MHD

Nature of Physical Problem

The primitive linearized resistive MHD equations in cylindrical geometry

are advanced in time. Separate

perturbations are solved. Hall

equations for the electron and ion temperature

terms and the thermal force vector are included

in Ohm’s law. Anisotropic thermal conductivity and viscosity are included in

the model. The plasma is assumed to be quasineutral. Fourier analysis in the

poloidal and toroidal directions is performed, resulting in a 1-D (radial)

system for the perturbed

Method of Solution

A finite difference

by central differences,

are fully implicit.

quantities.

method is used. Spatial derivatives are approximated

The mesh need not be uniform. Temporal differences

.
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Restrictions on the Complexity of the Problem

The user must adjust the size and type of radial mesh, in particular in

the singular layer, in order to model the physics accurately. For

nonaxisymmetric perturbations (m # O; see Eq. (21)) a small amount of viscosity

is necessary to prevent numerical instability. This is discussed further.

.

Typical Running ‘Time

Two versions of the

real version takes 40 ps

version takes 113 ps per

code are provided (see Sect. 1 of long write-up). The

per meshpoint per timestep on the Cray-1. The complex

meshpoint per timestep.

References

[1]. A.A. Mirin, N.J. O’Neill, J. Killeen, R.J. Bonugli andM.J. Ellis,

“Linear Studies of Resistive Interchange Modes in a Cylindrical

Reversed Field Pinch,” to appear in Phys. Fluids.

Note: Separate source codes for the real and complex versions are included in

the test deck. Test problem 1, which uses the real version, is followed by

test problem 2, which uses the complex version, To run the compile-load-go

deck at NMFECC, the sequence numbers in columns 77-80 must be removed from the

job control statements. These commands, which have an asterisk in column 1,

occur on lines 1, 2, 4666-4668, 4742-4746, 9641-9643, 9717-9719.
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LONG WRITE-UP

1. Introduction

Determination of the MHD stability of

requires a numerical approach. As a first

therefore quite common to perform a linear

a particular equilibrium generally

step it is often beneficial and

normal mode analysis. One way of

doing this is to convert the time-dependent system of equations into an eigen-

value problem, to discretize that set of equations to form a matrix eigenvalue

problem, and then to solve that resulting system for the growth rates and mode

structures. This technique has been used in the well-known codes PEST[l] and

ERATO[2]. Another approach is to integrate directly the time-dependent

equations to obtain the fastest growing mode. Such a procedure has been

carried out by Dibiase and Killeen[3] and by Shestakov, et al.[4]. This latter

method is often more tractible for complicated systems such as those in which

transport effects, e.g. resistivity and thermal conductivity, are included.

The model presented here is a one-dimensional (radial), linear initial

value code in cylindrical geometry. The compressible, resistive MHD equations

are integrated in time until the fastest growing mode emerges. Separate

equations for the electron and ion temperature perturbations are solved. Hall

terms and the thermal force vector are included in Ohm’s law. Anisotropic

thermal conductivity and viscosity are included in the model. Quasineutrality

is assumed.

/

The code uses complex arithmetic. In the absence of certain physical

effects (e.g. Hall and thermal force terms, transverse thermal conductivity,

PLR terms), the eight complex equations decouple into two identical real
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systems of eight equations each. Since in this case one need solve only a

single real system, two versions of the code are provided - a complex version

and a real version. The demonstration test problems, which solve for resistive

interchange modes in a reversed field pinch, use both the real and complex

versions of the code.

2. Basic Equations

In nondimensional form (the normalization of variables is summarized in

Table 1), the equations of interest are as follows:

!g+v.(py) -0

aTe
+ V-VT= = -x- (Y-1) Te V*y+ 2(7-1) J.(g+yx~)

P

aTi
— + Tyv!ri =
at

- (7-1) Ti Vcy

aJ+v*vv= lW

at - – ‘Z!
-.bp+
2p

:~xg+l V*=
P 2p

(1)

(2)

(3)

(4)
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g
--vxlJ

at
(5)

with the auxiliary conditions

(6)

(7)

(8)

The normalized resistivity q (which is taken to be constant) is the inverse

Lundquist number S - ‘R/TAs the ratio of the resistive diffusion time to the

Alfven transit time. The plasma is assumed to be hydrogenic and quasineutral

(n= ne = ni, hence p - rein), and the quantities Te/(7 - 1) and Ti/(7 - 1) are

actually the electron and ion energies per ion mass, so that the total

energy-density is minT/(~ - 1), where T - Te + Ti. The thermal conductivity

tensors (defined as mi times the usual definition [5]) ge and ~i are given

according to

where Q is a unit vector in the direction of the magnetic field,

‘Ilf
- (Vf ● b)b andVLf - Vf - Vhf. The quantity 7 is the.ratio——

of specific heats. The viscous stress tensor g is expressed in

terms of the Navier-Stokes tensor W by means of the five viscosity

coefficients:

‘#
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Z ‘PO WO+P1W1+P2W2-P3 W3-P4W4

where

.

.

(11)

(12)

with

Here, 6~j - ~ij . bibj and Cijk is an antisymmetric unit tensor. The thermal

force term ~ is given as

(14)

where terms proportional to VITe and ~ x VTe have been ignored. The Hall

-1parameter v is simply (@ciTA) , where @ci is the ion cyclotron frequency and

‘A is the Alfven time.
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An attempt has been made to include most of the relevant physics contained

in Braginskii’s[5] theory. Tensor representations of the viscosity and thermal

conductivities are utilized due to the vast disparity of values in the

perpendicular and parallel directions. The resistivity is treated as a scalar

because of the mere factor of two difference between perpendicular and parallel

values. Ohm’s law neglects electron inertia and viscosity but contains both

Hall terms and the thermal force vector _~; the VLTe component of _~ has been

ignored since it is of order (wce er ) smaller than the Q x VTe term (of ~T)? and

that term is dropped since it is of order (uCere) smaller than the Vpe term in

~Hall; here Wce is the electron cyclotron frequency and ~e is the electron

collision time. Although they have a small effect, similar higher order terms

are included in the viscous and thermal conduction terms, more as a matter of

history than design. The component of the heat flux due to friction, gu,

estimated to be a few orders of magnitude smaller than the thermal heat flux

for contemporary magnetic fusion devices, has been ignored. Viscous heating,

which goes as velocity squared, is not included since in the absence of

equilibrium flow it is a nonlinear effect.

It is acknowledged that even after all of these considerations, the code

model most likely does not truly represent the physics. This is because the

physics is most likely not classical due, for instance, to the long mean free

path parallel to the magnetic field. Provision is made, however, to multiply

the classical values by enhancement factors if desired. Further details may be

found in Mirin, et al.[6].
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Cylindrical coordinates (r,#,z) are used. Each dependent variable is

written as a sum of a zeroth order and first order component, the former

depending only on r. Eqs. (l-5) are then linearized about the zeroth order

state. (A further assumption of the linearization is that the transport

coefficients depend only on zeroth order variables.) Setting ~- O results in

the following equations:

P - Po (independent of r)

aT 2(7-1) ~~.~ + ~V “ (&evTeo) + ‘ei ‘TiOeo - - Tee)
at P. Po

aTio
.—. - U v ● (~iVTio) + Vei(Teo - Tie)
at PO

POVTO -2(vxl&)x&

as
—--vx(qvxBJ
at

(15)

(16)

(17)

(18)

.
with 130- ~ B~o(r) + z Bzo(r) and To = Teo + Tie; note that p. has been taken

to be independent of r. The factor of two in Eq. (17) is due to the

normalization. The quantities Tee, Tio and ~ will change”very slowly since S

is large and V = O.II
Thus, the radial component of Eq. (17) together with

non-changing Tee, Tio and B. defines an approximate equilibrium which may be

thought of as constant in time when analyzing sufficiently fast-growing

perturbations. It is such an equilibrium which is used.

Temporal equations for the perturbed variables are obtained by ignoring

nonlinear combinations of first order quantities. For example, setting
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P - P. + PI and x = ~ + xl in J@. (1) and noting that P. is

independent of r and t and ~ - 0 yields the equation:

a~.‘L

zF- - v “ (P&q) (19)

The equation for

example. For PO

11-14) yield the

the perturbed electron temperature provides a more complicated

independent of r, and To constant in time, Eqs. (2, 6-8,

following:

[

‘YT ~el.”~+meo “4“4‘2(VXE1)”[’vx~+-l

}v ● (sevTel) + ~ei(Til - Tei) (20)

Equations for the other perturbed variables are obtained in an analogous

manner.

The perturbed quantities are represented as Fourier modes

ul(r,~,z,t) -;(r,t) exp[i(m#+nkz)], (21)

.

where k is the inverse aspect ratio of the corresponding torus. A system of

eight complex-valued second order partial differential equations, written in
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. A-. . .
the form ~ = L(U), is solved numerically for the quantities p, Te, Ti, Vr, Vd,
.- A.

v z, B= and Bd; B= is obtained from V~~ - 0 (hence n # O).

4. Boundary Conditions

4

Atr- 0 regularity conditions identical to those of Dibiase and

Killeen[3] are used. All perturbed variables are zero except for p‘, ie, +i,
A.. A

iz , ifm- 0 andVr, Vd, Br, Bd if m- 1, which instead have zero first

derivative (in r). (Note that in order to guarantee unique Cartesian
. .

components of the m - 1 variables, it is necessary to have Vr + iv4 - 0 and ~r
.

+ iB4 = O; this condition (which over-specifies the discretized problem) is not

invoked.) At r - rmax = rwall, free-flow and conducting wall boundary

conditions combined with

fusion experiments often

pressure balance are implemented, (Since magnetic

have an outer conducting wall, those conditions are

often appropriate when modeling

Br are zero, and the quantities

derivative.

resistive instabilities.)The quantities Vr and

P, Te, Ti, rV4, Vz and rB4 have zero first

5. Numerics

The “hatted” variables defined in Eq. (21) are represented on a radial

mesh which is allowed to be nonuniform to allow for their possibly localized

behavior. Centered radial differencing is used, and a fully implicit

difference scheme is implemented. This results in the block tridiagonal system

(22)
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Eq. (22) is solved according to the method of Richtmyer and Morton[7]:

‘j = (Bj - Cj Ej-l)-lAj, j > 1

‘l(Dj + Cj Gj-1)
‘j

= (Bj - Cj Ej-l) ,j>l

followed by

“ n+l
‘Ej~~~~+Gjtj<J‘j

(23)

(24)

(25)

where the mesh index runs from O to J. The equations are time-integrated until

the fastest growing mode emerges. An algorithm of Buneman[8] is used to

analyze the complex growth rate -y+ iw (growth being defined according to

exp[7 + iu)t].

For nonaxisymmetric modes (m # O) a small amount of viscosity is necessary

to prevent numerical instability. This instability has to do with the fact

that in the absence of viscosity, velocity values at neighboring meshpoints are

coupled only through the other variables. Because the force terms are largest
.

in the radial direction, it is the Vr equation which is most susceptible to

this instability. The amount of viscosity required is an approximately

linearly increasing function of S and a quadratically decreasing function of

meshwidth, and is problem dependent. For a recent study of resistive

interchange modes in a reversed field pinch[6], numerical stability was

attained with values of viscosity equal to 1 x 10-4 times classical for cases

having 1500 meshpoints, m equal to 1 and S equal to 1000.

.
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For situations in which it is desired to reduce the higher wave numbers in

the solution, there is an option to artificially smooth each perturbed variable

through addition of an undivided second difference. This option usually does

not have to be invoked, since typically the only “troublesome” variable is Vr,

whose smoothing may be handled through physical viscosity. Whether using

artificial smoothing or the actual viscosity term to smooth calculations, the

use of too large a parameter will result in a nonphysical reduction in the

growth rate.

Convergence checks have been carried out in various regions of parameter

space, in which the timestep At and the number of meshpoints J have been

varied. The criterion of less than a percent change in the growth rate when

doubling J and halving At has been adhered to. Most of the cases have been

carried out with J - 1000, although some of the higher S cases have been

checked with J as high as 3300. The results have generally been insensitive to

At provided yAt < 0.05.

The code contains built-in checks to make sure that the implicit

discretization of each term is being performed correctly. That is, the

right-hand side of each equation may be difference explicitly at the end of

the timestep and compared with the backward temporal difference of the

left-hand side, making sure that there is

i.e. [~(t+At) “- U(t)]/At is compared to

L[ti(t+ At)].

agreement down to round-off;

the spatial discretization of
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compared with two other time-dependent

resistive MHD codes--RIPPLE IV[9] and TEMCO[1O]. For a typical “tearing mode

stable” equilibrium[ll] excluding transport and Hall effects (but including

resistivity), all three codes yield growth rates to within five percent of each

other and almost identical perturbed profiles[12]. Similar agreement is

obtained for the “Bessel function” equilibrium model. In a recently completed

comprehensive study of resistive interchange modes in a reversed field pinch

[6], results of ODRIC were compared to analytic predictions and to previously

published data.

6. Helical Flux Diagnostic

In order to evaluate the effect of the

compute the magnetic field topology. Since

helicity h - m/nk, it is possible to define

to

Br=~~
rh 8P

[11 !?+hBBz=-–
r ar 4’

perturbation, it is important to

the perturbation is of a single

a helical flux function # according

(26)

.
where p = # + h-lz. In the case of an axisymmetric (m = O, n # O)

a+
perturbation, h is equal to zero and Br - —. The flux is computed by

az

integrating Eq. (27) along each p-line beginning at r - 0, subject to the

boundary condition + - 0 at r - 0.

(27)
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Contour plots of the helical flux are available to users on the NMFECC

network. In the axisymmetric case the contours are plotted in r - z space.

For m # O the contours

(i.e. p is interpreted

are plotted in (r}p) space using a polar representation

angularly).

7. Structure of ODRIC; Subroutines and Special Features

The

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(1)

(m)

(n)

(o)

(P)

(q)

driver (MAIN) first calls several initializing routines:

SETI.AB- computes labels for output

INREAD - reads in and prints out input data

MESH - computes the radial mesh

DRMESH - computes radial differences

PERTRB - computes initial perturbation if none specified

RSTART - inputs initial perturbation from disc file

MULTY - scales initial perturbation

ZIMAG - sets imaginary part of perturbation to zero

BFM - Bessel function equilibrium

PP - pitch and pressure form of equilibrium; includes tearing mode

stable case

INEQUL - equilibrium contained in disc file

CONST - computes radius of singular surface

DGNOS2 - computes maximum timesteps for explicit difference algorithm

BRL - implements r - 0 boundary condition in difference scheme

(computes top block-row of tridiagonal matrix)

STCOFF - computes interior block-rows of tridiagonal matrix

BCR - implements r - rmax boundary condition in difference scheme

INTPLT - plots equilibrium quantities vs radius
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(r) PLOTS - plots perturbed quantities vs radius

(s) HELCAL - computes helical flux funtion; a contour plot is not supplied

for non-NMFECC users

The “DO 10” loop is where

following routines:

the time integration is carried out; it uses the

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

At

(a)

(b)

(c)

(d)

(e)

(f)

SAVOLD - stores perturbed variables at current timestep
.

RHs - computes explicit dependencies in difference equations

SETG - performs first sweep of tridiagonal solve

TRSLVE - performs last sweep of tridiagonal solve

SMOOTH - allows for artificial smoothing

GROWTH - computes growth rates

PLOTS - see above

HELCAL - see above

the conclusion of the time integration the following routines are called:

GPRINT - prints growth rates vs time

GPLOT - plots growth rates vs time

PTERMS - plots individual physics contributions to the various

equations

EQNCHK - compares left and right hand sides of difference equations
. .

DLSTAR - computes ~~(real)/Br(real) and ~~(imag)/Br(imag)

FIN - scales dependent variables and writes them onto disc file

There are a number of subroutines not called from MAIN, which are therefore

not on the above list. They are:

(a) MLTMAT - multiples 8 by 8 matrices



(b) MLTVEC -

(c) ADDMAT -

(d) SUBMAT -

(e) ADDVEC -

(f) SUBVEC -
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multiplies matrix times vector

adds matrices

subtracts matrices

adds vectors

subtracts vectors

(g) INV - computes inverse of real matrix

(h) CINV - computes inverse of complex matrix

(i) FJO - computes JO(X)

(j) FJ1 - computes J1(X)

(k) ERROR - error recovery routine

(1) GRAPH - outputs y(x), y real

(m) CGRAPH - output y(x), y complex

(n) CMGROW - used to compute growth rates

(o) SAVOLD - saves dependent variables at earlier timesteps

(p) MAKEBZ - computes B= fromV Q ~- O

(q) GETR - computes mesh ratio for geometric radial mesh

(r) SPLNID, SPLID1, SPL1D2 - 1-D cubic splines package; (The routines

SPLID1 and SPL1D2 are modifications of those obtained from

T. Jordan of Los Alamos National Laboratory [13])

(S) DU, D2U - first and second derivative functions

(t) GTERMS - computes individual physics contributions to the various

equations

(u) MINV, DEC, SOL - package to invert real 8 by 8 matrix (a version

of MINV in CAL exists in OMNILIB on the NMFECC system); (The

routines DEC and SOL were written by A.C. Hindmarsh, et al. [14])

(v) CAXPY, CDOTC, CGECO, CGEDI, CSCAL, CSSCAL, CSWAP, SCASUM, CGEFA,

ICAMAX - package to invert complex 8 by 8 matrix (these routines
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are also in the SLATEC library [15])

(w) LUF - Table look-up routine

For users on the NMFECC network, output is usually in the form of plots, and

the library TV80LIB is loaded. However, for those users who desire printed

output, the following routines are used instead:

(a) FRAME - advances output to the next page

(b) FR801D - creates output file

(c) TRACE - plots y Vs x

(d) SETCH, KEEP80, MAPS, RCONTR,

Other NMFECC features:

CONTUR - dummy routines

(a) Subroutine DROPFILE (called from MAIN) is necessary on the NMFECC

system; it copies the loaded code into another file.

(b) Subroutine

(c) Subroutine

(d) Subroutine

(e) Subroutine

OPEN (called from MAIN) opens the input data file

TIMEDATE (called from INREAD) prints out the date and time.

CREATE (called from FIN) creates the output disc file.

OPEN (called from RSTART) opens the

disc file; subroutine CLOSE closes it.

(f) Subroutine OPEN (called from INEQUL) opens the

input perturbation

equilibrium disc file.

8. PMAMETER Variables

The following variables appear in PARAMETER statements:

ICMPLX - 1 for real version, 2 for complex version

JMX - maximum number of meshwidths

IPMAX, IPMAXG - maximum number of time levels at which growth rates

are saved for (prints, plots), respectively

JMX1 - maximum number of meshpoints
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JJJ , III - limits on r and p meshes for helical flux diagnostic

NCONTF - number of contours in helical flux diagnostic

9. COMMON Variables

Block MATS

A, B, C, D, E, G - correspond to variables in Eqs. (23-25);

A and B need not be stored at each meshpoint simultaneously
.

u-u- (ir, id, ie, ir, ;4, ;=, - “P, Ti) (Eq. (21))

R- radial mesh (r)

BTO, BTOP - Bdo, B~o’ (Eq. (18))

BZO, BZOP, BZ02P - Bzo’, Bzo’, Bzo” (Eq. (18))

TO, TOP, TOPP - To, To’, To”

RHOO, RHOOP - PO, PO’ (Eq. (17))

(NOTE: pi must be zero; certain areas of code assune uniform

equilibrium density)

ETAO, ETAOP - ~o, q; (NOTE: q - no) (Eq. (17))

L - identically equal to 1

F- ~*l&, where ~ is the wave number vector

BCE - (Bj-CjEj-l)
-1

P, PG - growth rate prints/plots; the first subscript is the

time level; the second subscript is the variable number; the

first and second entries of the third subscript are the real

and imaginary parts as computed using the Buneman routine, and

the third entry is the real growth rate computed using

successive quotients; the fourth subscript allows two entries

corresponding to the real and imaginary variable parts for a

complex case.



-20-

SDEV - standard deviation of growth rate divided by mean

PRTMES, PTIMEG - array of time values for growth rate prints/plots

NAVE - number of meshpoints at which growth rate is computed successfully

OMEGA - artificial smoothing coefficient (multiplies undivided second

difference)
.-

BZ, BZP - B=, B=’ (Eq. (21))

EQN - forces perturbed variables to maintain a constant profile

while growing

DR-: (rj+l-rj-l)

rl-ro if j=O

at a specified rate (PGRO)

ifO<j<J

rJ-rJ-~ if jd

DRP - rj+l - ‘j

DRM-r
.l- rj-1

MULT - multiplies input perturbation

IMUS - switches for viscosity

Uo - values of perturbed variables at previous times

Block CONS

M - m (Eq. (21))

GAMMA - 7 (Eqs. (2-3))

RW - wall radius

JMAX-J

co - determines magnitude of initial perturbation

MODEL - equilibrium model

c1 - equilibrium magnitude with Bessel function model

KSTARE - Kel (Eq. (9))

KPARE - ‘en - Kel (Eq. (9))

KSTARI - KU (Eq. (10))
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.KPARI - ‘iu

[

- Ku (Eq. (10))

ALPHA - 1(m/r~)2 + (nk)2 1/2,

radius

KZ - nk (Eq. (21))

BETA - 1 (not used)

DT - timestep (At)

ITIME - cycle number

IPRINT, IPLOTG - frequency of

rate print/plot tables

IPLOT - frequency of plotting

where rs is the singular surface

adding entries to growth

dependent variables

IHPLOT - frequency of plotting helical flux contours

Nu- multiplies argument in Bessel function equilibrium

ITMAX - number of timesteps

s-s= -1.
~R/~A (V - S , see Eq. (7))

PLTIME, PRTIME, PLTMEG, SMTIME - used in conjunction with IPLOT,

IPRINT,

1P, IPG -

TOIN - To

IPLOTG, ISMOTH

number of time entries in growth rate prints/plots

at wall (Eq. (17))

RHOOIN - P. (Eq. (17))

INFILE, OTFILE - input/output perturbation files

ISMOTH - frequency of applying artificial smoothing

ID - run identification

ICOPT - chooses initial velocity perturbation for M - 1

MSHTPE - geometric or uniform mesh

Jl, J2, Rl, R2 - used to define geometric radial mesh

AA, BB, CC - used to define Suydam parameter for tearing mode stable

equilibrium
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JRR - mesh index of singular radius

GHALL - determines fraction of equilibrium pressure in electrons

WCTAI - Hall parameter v (Eq. (8))

MUSTAR - viscosity coefficients (Eq. (11))

ETAOIN - q. (Eq. (7))

RR - singular radius

PGRO, GROFAC - used in conjunction with EQN = “OFF”

Nuo - v/4 (Eq. (8))

TIME - t

IHALLT - decides if Hall terms are to be included in temperature equation

ZERMAG - used to set imaginary part of initial perturbation to zero

ECHECK, EPSMIN - used to perform consistency check on equations

GROUT - switch for outputting growth rate diagnostics

TERMS -switch for plotting individual physics terms

FOHMH - switch for inclusion of Ohmic heating

NUEI - ~ei (Eqs. (2-3))

DSKOLD - describes format of input disc file

YE, YI - Kea, ICi.(Eqs. (9-10))

GAMMAT - VT (Eq. (14))

Block KKPLOT

IUN - logical unit for output (100 for plots on NMFECC network)

ISKIP - frequency of meshpoints included in output

Block CHRS

LABP, LAB - output labels

Block MSPL

SPL1, SPL2 - arrays containing information fed into 1-D spline package

W, Tl, T2, T3 - extra storage for 1-D spline package
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RSPL - radial nodes for disc input to be splined

Block CTERMS

BRVXB through TICOLL -
.

individual contribution to the equations for U
.

~S, URHS, UDIF - left side (AU/At), right side (physics), and
.

relative difference of equations for U
,

TLHS, TRHS, TDIF - temporary values of ULHS, URHS, UDIF

AMX, BMX - suprema of UDIF over mesh

10. Input

Input data is read in subroutine READIN. All of of the input variables

are in COMMON and have been described in the previous section; a more

comprehensive description appears in the comments at the beginning of the code.

The equilibrium may be input in binary form in subroutine INEQUL. The initial

perturbation may be read in binary form in subroutine RSTART.

11. output

The final perturbed state is normalized and output into a binary disc

file. The remaining output appears in print format, although users of the

NMFECC network may instead use TV80LIB and obtain plotted output. At the

beginning of the run, the date and time (NMFECC only) are printed out, followed

by the values of all of the input variables, followed by the nondimensional
f \

wave number a -
I J
(m/rs)2 + (nk)2 , the singular radius rs, and the maximum

diffusive and advective timesteps (TRMIN and TAMIN) for an explicit difference

stheme. Various equilibrium variables (Bdo, Bd~, Bzo, Bz~, To, T:, Po, P;v v~f

n;,F - ~ ● ~) come next, followed by the perturbed variables; in each case
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the radially dependent variables are printed along with the corresponding

radius; the integer appearing to the left of the radius is generally the mesh

index plus one. At later times printed information includes the perturbed

variables in the above format along with growth rate information at various

times. The latter is printed twice (in differing formats; in the second

instance the data would normally be in plot mode on the NMFECC network.) In the

first instance the real and complex growth rates of each variable averaged over

radius are printed out, along with the relative

number of meshpoints which admit a valid growth

“P” stands for the real growth rate, and “GAMMA

standard deviation and the

rate diagnostic. The quantity

+ i OMEGA” is the complex

growth rate. In the second instance only the growth rates themselves are

printed out. Both real and complex growth rate diagnostics are included, since

the complex growth rate calculation breaks down in the real limit. Following
.

the growth rate information are the quantities ~~(real)/Br(real) and
.

~~(imag)/ Br(imag) vs r. In the case of the geometric mesh option these

quantities are printed out both over the whole radial domain and in the

neighborhood of the singular surface. The final diagnostic is the CPU time

(NMFECC only).

12. Test run 1 (real calculation)

Test run 1 uses an equilibrium of Robinson [11] which is stable to both

Suydam and tearing modes[16,17]; the aim is to find the fastest growing

resistive interchange mode[17]. The equilibrium is described in terms of

Suydam parameter Cl (which must be less than 0.125 for stability) and the

function p = rBz/B~, as follows:

the

pitch
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P = 2(1 - .125r2 - .0025r4) (28)

cl D-P’ 42 = 0,1,
2rB~

(29)

where p - pT and p - 1. The poloidal and toroidal mode numbers m and nk are

equal to 1 and -1.8, respectively. The initial conditions consist of parabolic
A .
Vr and V~ profiles. A complete list of input parameters is given in Table 2.

The printed output shows, in addition to information at t - 0, the

perturbed variables and growth rate evolution at the end of the run. The

(real) growth rate converges to a value of approximately 1.649 x 10-3. A plot
.

of Vr vs r appears in Fig. 1.

13. Test run 2 (complex calculation)

This case is similar to test run 1, except that the Hall, thermal force,

transverse thermal

imaginary parts of
.
parallel viscosity

compared to 500.

The resulting
.

conductivity and FLR terms, which allow the real and

perturbations to couple, are nonzero. In addition, the

is 100 times greater and the number of timesteps is 300 as

(complex) growt

Plots of Vr vs r appear in Figs. f

1 rate is equal to 2.01 x 10-2 + 1.18 x 10-2 i.

and 3.
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TABLE 1. NORMALIZATION OF VARIABLES

Variable Normalization Factor

r a

P FJ

B i

v

t

P = pT

T,Te$Ti

Pj

‘ei

VA = i (4?rp)-1/2

Ii=

li -

li2/8r

5/F

4ua2/c2rA

~a2/rA

ja2/2rA

I/rA

independently specified. The resistiveThe quantities a, ~ and B may be

diffusion time rR is equal to 4ma2/q1C2, where VL is the

resistivity. The perturbed variables Pl, Tel, Til, Vrl,

perpendicular

Ball,BZ1 are further

normalized by a factor of i.
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TABLE 2. INPUT FOR TEST RUNS 1 AND 2

The values for test run 2 (when different) appear in parentheses.

ID - #1 (#2)

INFILE - NONE

OTFILE - ODOUTTP1 (ODOUTTP2)

IUN = 3

ISKIP- 15

M- 1

KZ = -1.8

GAMMA = 1.6667

s= 1000.

KSTARE- 1.45 x 10-7

KPARE - 0.449

KSTARI - 2.67 X 10-6

KPARI - 0.0129

FOHMH - 1.

WCTAI = o.

GHALL - 0

IHALLT = o

MUSTAR -

NUEI -

YE =

YI =

GAMMAT -

IMUS -

RW =

DT =

‘6, 4.8 ~ 10-6, 0.(0.1) 0.(0.2)0.951 (95.1), 1.2 x 10

1.08 X 10-5

0 (.0256)

O (.0249)

o (.31)

1,1,1

3

10



ZERMAG -

DSKOLD -

OMEGA =

EQN =

MULT -

PGRO -

co =

ITMAX -

IPRINT -

IPLC)T=

IHPLOT -

IPLOTG -

ISMOTH -

ICOPT -

MSHTPE -

S1 -

J2 -

RI =

R2 =

JMAX =

MODEL -

AA-

BB =

cc -

TOIN -

RHOOIN =

ETAOIN -

-30-

NO

YES

0.

ON

1.

0.

1.

500 (300)

20

500 (300)

0

20

1

A

GEO

300

1200

2.1

2.5

1500

TMs

0.1

0.

0.

0.1

1.

1.

,



GROUT =

TERMS -

ECHECK -

EPSMIN =

YES

NO

NO

0.01

-31-

.

.
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Figure Captions

.
Figure 1. Plot of Vr vs r for test run 1.

.
Figure 2. Plot of the real part of Vr vs r for test run 2.

.
Figure 3. Plot of the imaginary part of Vr vs r for test run 2.
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